UCSF first to adopt Magseed as standard of care for localization of impalpable breast lesions

Magseed technology guides surgeons during a breast lumpectomy to simplify treatment and improve patient experience

Cambridge, UK & San Francisco, CA, 23rd January 2017: Endomag, the cancer healthcare company, announced today that the University of California, San Francisco (UCSF) has become the first US site to adopt Magseed™ as its standard of care for localization of impalpable breast lesions. Magseed™ is a simpler, more effective alternative to traditional wire localization methods.

Breast cancer is the most common form of cancer in women, with 1.7 million new cases of breast cancer globally every year, and is expected to double by 2030. Due to a rise in national screening programmes and an increase in public awareness, breast cancer is being caught at an earlier stage meaning that the tumors are smaller, less defined and harder to feel, with as many as 50% of all breast tumors impalpable at the time of diagnosis. In these cases, a technique called wire localization is typically used by surgeons to locate the tumor.

Although widely used, wire localization commonly causes complications. On average 1 in every 4 breast wire localizations result in cancerous tissue being left behind and requiring additional surgery because the wire has become dislodged between when it was implanted and when it was removed during surgery. Additionally, there is a risk of infection due to the wire protruding from the skin, so the placement of the wire must be done on the same day as surgery. These issues result in unnecessary anxiety for patients, delays to the surgical lists and fewer patients being treated as a consequence.

Dr. Eric Mayes, CEO of Endomag noted “The wire localization technique has remained largely the same since it was introduced over 30 years ago and it causes a lot of anxiety for patients. We wanted to create a technique that could simplify the localization process and improve the patient experience.”

Magseed™ is smaller than a grain of rice and can be placed into the tumor for up to 30 days, allowing the patient to return home ahead of surgery. Once implanted, the seed is not easily dislodged and patients are not restricted in movement or activity. During surgery the seed is detected with the Sentimag® probe to guide accurate removal of the tumor and maximising the amount of healthy tissue left behind. Unlike radioactive alternatives that involve strict regulatory oversight and complex logistics, the Magseed™ technique can be widely adopted by any hospital, regardless of size.

Dr. Laura Esserman (Breast Surgeon, UCSF) “We are excited to have a set of safe, easy to use tools that will improve the efficiency of identifying breast lesions and dramatically improve the experience of patients and clinicians, as well as the workflow in the operating room.”

Dr. Michael Alvarado (Breast Surgeon, UCSF) “We have been looking for a better alternative to wire localization for some time, as the wire procedure adds additional stress for the patients on the day of surgery and often causes delays to our operating schedule. Very early in our evaluation of the magnetic seed technique we found that we could avoid a same-day placement, and the surgeries could be completed in less time, without compromising accuracy. This offers a tangible benefit to both our clinical team and, most importantly, our patients.”
Photo: X-ray showing a complete surgical specimen with negative margins and Magseed™ in the centre, next to the cancer.

For a high res image please contact lorna.cuddon@zymecommunications.com

For further information please contact:
Zyme Communications
Lorna Cuddon
Tel: +44 (0)7811 996 942
Email: lorna.cuddon@zymecommunications.com

About Endomag http://www.endomag.com
Endomag is a pioneer in the use of magnetism for minimally-invasive surgical guidance. By addressing unmet needs in availability, affordability and workflow efficiency for surgical oncology, we support our mission to improve the global standard of cancer care for everyone, everywhere.

Founded as a spin-out from the University of Houston and the University College London (UCL) in 2007, we continue to develop our unique clinical platform that uses magnetic fields to power diagnostic and therapeutic devices. The company has sales in over 30 countries worldwide and is headquartered in Cambridge, United Kingdom.

UC Disclaimer
The information stated above was prepared by Endomag, and reflects solely the opinion of the corporation. Nothing in this statement shall be construed to imply any support or endorsement of Endomag, or any of its products, by The Regents of the University of California, its officers, agents and employees.